Simple Procedure for Assigning and Tracking Archive Status.

This describes the process as viewed from PDS. We care what happens in data-provider-world. But providers do not deliver data to us; we receive data from them. Similarly, we deliver data to users; but delivery does not affect archive status, so is not addressed here.

The process is described at the data product level, the finest granularity at which PDS tracks data. A product is one or more data objects plus a label, which points to each object and carries its CHECKSUM. The status of a data product is instantaneous; it cannot be in transition — e.g., accumulating. The status of a product aggregation — e.g., a data set — is an aggregated status of all of its data products (see below).

Keywords mark when a step has been achieved; values are given as PDS times (YYYY-MM-DDThh:mm:ss[.fff] in UTC) and are kept as housekeeping data in a registry for each product. As envisioned here, REVIEWED_TIME would be set by the DN; all others could be set by the system, often in conjunction with a manifest. YYYY-MM-DD should be adequate precision for most; but full precision is the default. Keywords can be multi-valued (see below).

Labels are received from data providers; label contents populate a registry. The registry includes a CHECKSUM for the label. Data users are given metadata from the registry, not the original labels; but registry information can be formatted to look like a label. This allows PDS to update registry information while also keeping a copy of the original submission (which goes with the CHECKSUM). I haven't figured out the consequences of registry modification (such as by a 'geometry engine'); if allowed, it complicates maintenance of archive status considerably.

	Step
	Archive Step
	Proposed Keyword
	Notes

	1
	Receive product from data provider
	RECEIVED_TIME
	If new product, open new entry in registry. Set keyword to current time; set other keywords to 9999-99-99T99:99:99.999 or an equivalent value. '9' values are handy because any smaller value implies the step has been reached.

If existing product, this is a new receipt (version). Add new values to keywords, assigning values as for first. This requires coordination with versioning function.

	2
	Completed peer review
	REVIEWED_TIME
	Date/time at which peer review approval was given. For pipeline reviews, REVIEWED_TIME may be earlier than PRODUCT_CREATION_TIME. Value is unlikely to have more precision than YYYY-MM-DD. Can REVIEWED_TIME be used to locate the peer review report(s)? Value assignments facilitated by using manifest.

	3
	Completed validation
	VALIDATED_TIME
	Date/time at which product successfully completed (machine) validation. Easily automated; msec precision useful in cases where there are several attempts at validation in a short time.

	4
	Released for public use
	RELEASED_TIME
	Date/time at which product was released for public use — often as part of a larger release. Value assignments facilitated by using manifest.

	5a
	Archiving process completed
	ARCHIVED_TIME
	Date/time at which all phases of the ingestion process have been completed (including delivery of deep archive copy to NSSDC).

	5b
	Data no longer considered valid
	WITHDRAWN_TIME
	Date/time at which product was withdrawn from archive; this is a permanent, irreversible step when there is no replacement product. Triggers delivery to 'withdrawn' deep archive if product achieved either 'released' or 'archived' status; reason(s) for withdrawal noted in registry. Possible to supersede?

	5c
	Data replaced
	SUPERSEDED_TIME
	Date/time at which product was replaced in the archive; this is a permanent, irreversible step when there is a replacement product. Triggers delivery to 'superseded' deep archive if product had achieved either 'released' or 'archived' status; reason(s) for replacement and PRODUCT_ID of replacement product noted in registry.

	5d
	Data protected but not passed through review and validation steps
	SAFED_TIME
	Date/time at which product was placed in protected storage. Expect '9' values for all other keywords except RECEIVED_TIME.

Example - Data Product Status: Data object AAAAAAAA.DAT and its label AAAAAAAA.LBL were received by GEO at midnight on last New Years Day (UTC). The instrument pipeline had been reviewed and approved at lunch on the previous Independence Day (local time). The product was validated within five minutes of receipt, staged with other products for release before noon (local time) the following day, and sent to the NSSDC deep archive two weeks later.

At noon on New Years Day, the keywords and their values were:

RECEIVED_TIME = 2009-01-01T00:00:00

REVIEWED_TIME = 2008-07-04T17:00:00

VALIDATED_TIME = 2009-01-01T00:05:00

RELEASED_TIME = 9999-99-99T99:99:99

ARCHIVE_TIME = 9999-99-99T99:99:99

WITHDRAWN_TIME = 9999-99-99T99:99:99

SUPERSEDED_TIME = 9999-99-99T99:99:99

SAFED_TIME = 9999-99-99T99:99:99

On 21 January, the keywords and their values were:

RECEIVED_TIME = 2009-01-01T00:00:00

REVIEWED_TIME = 2008-07-04T17:00:00

VALIDATED_TIME = 2009-01-01T00:05:00

RELEASED_TIME = 2009-01-02T17:54:32

ARCHIVED_TIME = 2009-01-16T16:33:01

WITHDRAWN_TIME = 9999-99-99T99:99:99

SUPERSEDED_TIME = 9999-99-99T99:99:99

SAFED_TIME = 9999-99-99T99:99:99

On Valentines Day, a new version of the product was received at GEO (same file names); the revised product was validated within five minutes, released for public use the following day, and sent to NSSDC two weeks later. The first version was declared superseded a week after the revised version was sent to NSSDC.

At the end of Valentines Day, the keywords and their values were:

RECEIVED_TIME = {2009-01-01T00:00:00, 2009-02-14T13:01:01}

REVIEWED_TIME = {2008-07-04T17:00:00, 2008-07-04T17:00:00}

VALIDATED_TIME = {2009-01-01T00:05:00, 2009-02-14T13:05:00}

RELEASED_TIME = {2009-01-02T17:54:32, 9999-99-99T99:99:99}

ARCHIVED_TIME = {2009-01-16T16:33:01, 9999-99-99T99:99:99}

WITHDRAWN_TIME = {9999-99-99T99:99:99, 9999-99-99T99:99:99}

SUPERSEDED_TIME = {9999-99-99T99:99:99, 9999-99-99T99:99:99}

SAFED_TIME = {9999-99-99T99:99:99, 9999-99-99T99:99:99}

In the middle of March, the keywords and values were:

RECEIVED_TIME = {2009-01-01T00:00:00, 2009-02-14T13:01:01}

REVIEWED_TIME = {2008-07-04T17:00:00, 2008-07-04T17:00:00}

VALIDATED_TIME = {2009-01-01T00:05:00, 2009-02-14T13:05:00}

RELEASED_TIME = {2009-01-02T17:54:32, 2009-02-15T17:29:51}

ARCHIVED_TIME = {2009-01-16T16:33:01, 2009-03-01T16:41:08}

WITHDRAWN_TIME = {9999-99-99T99:99:99, 9999-99-99T99:99:99}

SUPERSEDED_TIME = {2009-03-08T15:09:10, 9999-99-99T99:99:99}

SAFED_TIME = {9999-99-99T99:99:99, 9999-99-99T99:99:99}

There are some unresolved issues, such as whether two versions of the same product can exist simultaneously in the system, which need to be covered by the versioning policy/function.

Example - Data Set Status: A known data set received in one operation at a DN should progress through ingestion as a unit. A data set received incrementally from an active mission will have subsets at different stages, including some which have never been received. It should be possible to compile a 'vector' status, which shows the number of products at each stage — think histogram. Whether or how to show the products not yet received is TBD, as is the question of how to handle withdrawn, superseded, and safed products (should they be counted more than once?).

If a data set has 100 products received, all reviewed, 85 validated, 65 released, and 55 archived, its status could be displayed as

(100, 100, 85, 65, 55)

There should be additional elements in this vector (withdrawn, superseded, safed). Not knowing how they should be counted, I have not attempted to show them.

